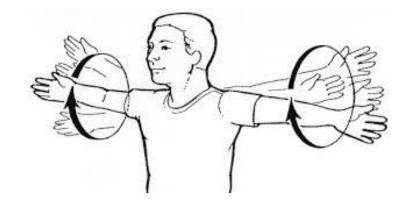

Year 6 Home learning Maths

Day 9. Adding and subtracting fractions


Monday 23rd March 2020

Good morning Year 6!

We hope you are keeping well and looking after yourselves and your families.

The following slides contain your daily Maths tasks.

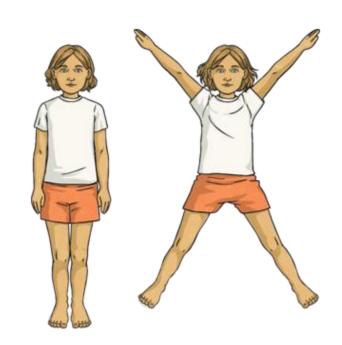
Monday 23rd March

Let's get active:

Stand up tall and put both arms out to the sides. Slowly start to rotate them forwards to the size of a large hoop. Count to ten.

Next, rotate your arms to the size of a basketball, slightly increase your speed and count to ten.

Repeat this for following objects


As your rotations gradually decrease in size your speed should increase. Change every ten seconds.

Maths: Active

Perform jumping jacks while you recite a times table you find challenging, for example:

$$1 \times 8 = , 2 \times 8 = up to 12 \times 8 =$$

Can you do it backwards?

To add or subtract fractions with the same denominator I

Add or subtract the numerators and keep the denominator the same.

What is
$$\frac{2}{8} + \frac{4}{8}$$
?

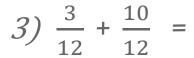
We add the numerators:

$$2 + 4 = 6$$

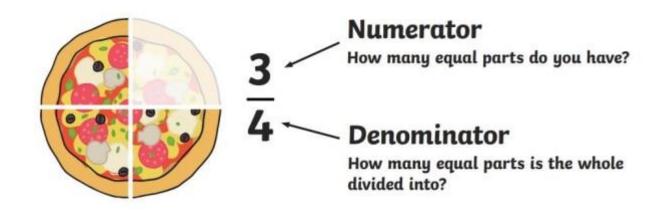
So the answer is $\frac{6}{8}$ or simplified $\frac{3}{4}$

What is
$$\frac{5}{10} - \frac{3}{10}$$
?

We subtract the numerators:


$$5 - 3 = 2$$

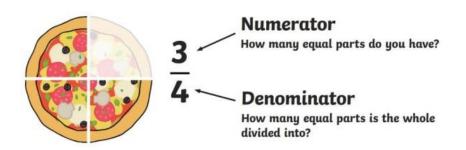
So the answer is $\frac{2}{10}$ or simplified $\frac{1}{5}$


Try these:

1)
$$\frac{4}{7} + \frac{3}{7} =$$

$$2) \frac{7}{10} - \frac{2}{10} =$$

$$4) \ \frac{6}{20} + \frac{17}{20} =$$


Did you get...

1)
$$\frac{4}{7} + \frac{3}{7} = \frac{10}{7} = 1\frac{3}{7}$$

$$2) \ \frac{7}{10} - \frac{2}{10} = \frac{5}{10} = \frac{1}{2}$$

3)
$$\frac{3}{12} + \frac{10}{12} = \frac{13}{12} = 1\frac{1}{12}$$

4)
$$\frac{6}{20} + \frac{17}{20} = \frac{23}{20} = 1\frac{3}{20}$$

To add or subtract fractions with a different denominator I need to.....

- Find a number which is a common multiple of both denominators.
- Whatever number I multiply the denominator by, I must multiply the numerator by the **same number**

What is
$$\frac{2}{5} + \frac{1}{3}$$
?

$$\frac{2}{5} = \frac{6}{15}$$
 I multiply the numerator and denominator by 3 to get 15 because 15 is a common multiple

$$\frac{1}{3} = \frac{5}{15}$$
I multiply the numerator and denominator by 5 to get 15 because 15 is a common multiple

$$\frac{6}{15} + \frac{5}{15} = \frac{11}{15}$$

To add or subtract fractions we must first convert them to the **same denominator**.

Step 1: Find a number which is a **common multiple** of **both denominators**.

Step 2: Whatever number you multiply the denominator by, you must multiply the numerator by the **same number**.

Step 3: Now add or subtract the numerators and keep the denominator the same. This is your answer.

LO: to add and subtract fractions

1)
$$\frac{3}{4} - \frac{8}{12}$$

5)
$$\frac{5}{8} + \frac{2}{6}$$

2)
$$\frac{6}{7} - \frac{18}{28}$$

6)
$$\frac{4}{5} - \frac{2}{7}$$

3)
$$\frac{2}{3} + \frac{7}{12}$$

7)
$$\frac{5}{9} - \frac{2}{8}$$

4)
$$\frac{6}{9}$$
 + $\frac{27}{36}$

$$8)\frac{5}{9}+\frac{12}{27}$$